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Abstract
Formation of incommensurate three-dimensional magnetic order below T ∗ ∼
10 K in CuB2O4 is explained on the basis of strong correlation between the holes
and localized spins. The Kondo lattice model is analysed for the case where
spin polarons are the elementary excitations. The origin of the low-temperature
specific heat maximum at T ∼ 5 K is associated with a displacement of the
polaron band bottom. A set of anomalies in the temperature dependence of the
conductivity, shift of the optical conductivity maximum in the range of energies
0.02–0.12 eV and decreasing of the infrared absorption intensity is predicted.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The formation of incommensurate structures has often been observed in low-dimensional
spin S = 1/2 systems as in RbCuCl3 [1] and a field-induced magnetic soliton lattice in
the spin–Peierls compounds CuGeO3 [2]. The formation origin of incommensurability is a
competition of different interactions: antiferromagnetic exchanges between nearest and next-
nearest neighbours, Dzyaloshinskii–Moriya interactions and interaction between magnetic
systems and elastic or electron systems with an incommensurate period of structure.

The incommensurate structure in a three-dimensionally ordered magnetic lattice is found
in CuB2O4 [3]. Upon lowering the temperature below T ∗ < 10 K, a second magnetic
phase transition toward an incommensurate three-dimensional magnetic order occurs. In the
incommensurate phase, but in the vicinity of T ∗, higher-order satellites appear in the neutron
diffraction pattern. CuB2O4 crystallizes in space group I 4̄2d (D12

2d) with lattice constants
a = 11.528 Å, and c = 5.607 Å [4]. The existence of such magnetic structure has been
explained by relativistic effects such as spin–orbit coupling that is ascribed to a kind of

0953-8984/04/325907+08$30.00 © 2004 IOP Publishing Ltd Printed in the UK 5907

http://stacks.iop.org/JPhysCM/16/5907


5908 S S Aplesnin

Dzyaloshinskii–Moriya (DM) interaction. Using the DM interaction and anisotropy in the
basal plane the modulation of the order parameter in copper metaborate along the helix direction
is described within the Landau theory of phase transitions by the solution of the sine–Gordon
equation. Treatment of inelastic scattering neutron using spin wave theory gives magnetic
moment per site σ = 0.94 µB and antiferromagnetic exchange between nearest neighbours
J = 3.93 ± 0.02 meV [5]. The Nèel temperature is TN = 20 K, the paramagnetic Curie
temperature is � = −9.5 K and an effective magnetic moment determined from the magnetic
susceptibility is µeff = 1.77 µB [6].

2. Model

In this paper we suggest a microscopic theory of formation of incommensurate magnetic
structure in CuB2O4. On the basis of the results of the theory the unclear origin of
the low-temperature specific heat maximum [10] and a discrepancy between exchange
values determined at low and high temperatures from the paramagnetic Curie temperature
I = 3�/(zS(S + 1)) � 0.9 meV will be explained. CuB2O4 reveals slight piezoelectric
properties [7]. So single-axis pressure along [011] induces a electrical induction. The
acoustic transverse waves expanded along [100] show anisotropy of velocities v010 =
4867.7 ± 0.1, v001 = 5307.0 ± 0.5 m s−1 for wave polarization [010] and [001] [7]. These
results suggest the existence of anisotropy of the electron density distribution within ∼8%.

We suppose the electrical properties of copper metaborate are attributable to the bounded
state of the electron and hole. The energy difference term of copper and boron ions Cu2+, B3+

is �(EB3+ − ECu2+) ∼ 1 eV [8] and they connect by means of the oxygen. As a result of
this the effective charge of copper may increase and the charge of boron may decrease. This
may be interpreted as the formation of a hole in a copper ion. The strong hole interaction
with the excitations of the antiferromagnetically ordered spin subsystem is described in terms
of the s–d model. In this case, a more complex excitation—a spin polaron—is a good
quasiparticle.

In the currently existing theoretical studies the energetically low-lying spin-polaron states
are constructed first to calculate the elementary excitation bands. The mean-field approach is
applied to the simplest model of the Kondo lattice [9]. The Hamiltonian of this is

H = H0 + H1 + H2,

H0 =
∑
r,g

(thp a†
r+hp,σ

ar,σ + thc a
†
r+hc,σ

ar,σ + e.c.) =
∑

k

εka†
k,σak,σ,

H1 = J
∑

r,σ1,σ2

a†
r,σ1

Sα
r σ̂ α

σ1,σ2
ar,σ2 ,

H2 = 1
2 I

∑
r,g

Sα
r+g Sα

r .

(1)

Here, the sites r form a tetragonal lattice, hp and hc are the distances to the nearest
neighbours in the plane and along the c-axis, a†

k,σ is the creation operator for the holes with
spin indices σ = ±1, H0 describes the carrier hopping, thp = −t1, thc = −t0, H2 is the
antiferromagnetic interaction of the localized spins S = 1/2 with their nearest neighbours, H1

is the Hamiltonian of the on-site Kondo interaction, σ̂ α are the Pauli matrices, and α = x, y, z.
Let us write the first two equations for the Green functions describing the hole motion on

the antiferromagnetic background. Using the random phase approximation the set of equations
for the Green functions 〈〈ar,σ |a†

r,σ 〉〉 and 〈〈br,σ |a†
r,σ 〉〉, brσ = Sα

r σ̂ α
σ,σ1

ar,σ1 , α = x, y is closed.
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These equations have the following form:

(ω − εk)G1
k = 1 +

J

2
G2

k,

(ω − ek)G2
k = J (1 + m − 2nm)G1

k,

G1
k = 〈〈ak,σ |a†

k,σ 〉〉; G2
k = 〈〈bk,σ |a†

k,σ 〉〉
εk = ε0

k +
Jm

4
− µ,

ε0
k = −2t1(cos kx + cos ky) − 2t0 cos kz,

ek = 2zcε0
k + J

(
m

2
+ n

)
+

z

2
m I − µ,

n = 〈a†
↑a↑ + a†

↓a↓〉.

(2)

Here, bk,σ , ak,σ and Gk are the Fourier transforms of the corresponding on-site operators and
the Green function, respectively, c = 〈Sx

r Sx
r+g + Sy

r Sy
r+g〉 is the spin–spin correlation function on

the transverse spin components, z is the number of nearest neighbours, and m is the sublattice
magnetization. All energies are reckoned from the chemical potential µ.

The solution to the set of equations (2) leads to the following excitation spectrum:

ω1,2(k) = 1

2

[
εk + ek ±

√
(εk − ek)2 + J 2

(
1 + m

2
− nm

)]
. (3)

The chemical potential is calculated from the self-consistent solution of the equation for
the hole concentration n

n = 1

N

∑
k

∫
dω f (ω)

1

π
Im G1, (4)

where f (ω) = (exp(ω/T ) + 1)−1. The summation over the momentum in the Brillouin zone
is made using 8 × 106 points.

To calculate the self-consistent sublattice magnetization and spin–spin correlation function
we write four additional linear differential equations for the Green functions 〈〈Sα

r,γ |br,σ 〉〉,
〈〈Sα

r,γ |Sα
r,γ ′ 〉〉 for the two sublattices γ, γ ′ = 1, 2, and two equations for the sublattice

magnetization and correlation function. The task can be simplified if we consider the
magnetic system in the adiabatic approximation and make some estimations for the temperature
dependence of m, c. The free energy expansion procedure gives the power function
m = m0

√
1 − T/TN. According to the elastic neutron scattering data [3] the sublattice

magnetization is m0 = 0.94 µB at T = 2 K. The spin–spin correlation function for the
nearest neighbour sites may be estimated at the Néel temperature as

〈Sα
0 Sα

r 〉 � 〈(Sα)2〉
1 + r

= S(1 + S)

3(1 + r)
; 〈Sα

0 Sα
r=1〉 = 0.125. (5)

At low temperatures when the correlation radius of the spin fluctuations is ξ ∼ a (a—
lattice constant) the transverse spin–spin correlation function is calculated in the mean-field
approximation 〈Sα

0 Sα
r=1〉 = 0.125(1−m2). The dependence of c(T ) in the paramagnetic phase

is taken to be symmetric relative to the Nèel temperature.
As a result of the anisotropy of the transverse acoustic waves, the piezoelectric constants

in CuB2O4 and the tetragonal symmetry a (lattice constant in plane) > c the carrier hoppings
should also be taken as anisotropic, t1/t0 = 0.92.
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Figure 1. Dispersion branches of spin-polaron excitations along [001] (a); [101] (b); [111] (c) at
different temperatures. The horizontal line indicates the position of the chemical potential in the
lower band (dotted line).

3. Discussion of results

The polaron excitation spectra for three directions are shown in figure 1 for the following
parameters: I/t0 = 0.08, J/t0 = 2.06. The band splitting of free electrons is observed in
consequence of the strong interaction with the localized spins forming an ordered Nèel state.
The Fermi level locates in the lower band near the chemical potential denoted in figure 1
by a dotted line. The Fermi energy and s–d energy of interaction have comparable values.
S-electrons form a spin density wave (SDW) with the wavevector arranged near the Fermi
surface since the Fermi energy exceeds by more than one order of magnitude the magnetic
excitation energy. SDW modulates the density of localized spins that causes the additional
satellites observed in the neutron diffraction pattern. The evolution of the satellite position
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Figure 2. The temperature dependence of Fermi momentum (2) and the satellite position in the
neutron diffraction pattern (1). The curve is the fitting function Q(T ) ∼ (T ∗ − T )0.48 [3].
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Figure 3. The energy of the band bottom Wbot/t and band top Wtop/t versus the temperature. The
inset illustrates the temperature dependence of the bandwidth.

with temperature is found to follow a power law [3]

Q(T ) ∝ (T ∗ − T )ν, (6)

with ν = 0.48, as shown in figure 2. The calculated change of Fermi momentum kF along
[001] (figure 2) versus temperature is in good agreement with the experimental data. The
estimated value of kF = (0, 0, 0.14) at T = 1.8 K is also in accord with the period of the
spin modulation, Q = (0, 0, 0.15). The Fermi surface is a restricted domain with the centre
of the band at T < T ∗ and vanishes at T = T ∗. The Fermi momentum lies in the range of
π/2 < kF < π with centres on the band edges where the spin-wave spectrum in CuB2O4 is
not observed. The decrease of the effective interaction energy of s electrons with the localized
spins caused by decreasing sub-lattice magnetization results in a shift of the bottom and top of
the polaron band and an increase of the bandwidth as shown in figure 3. In the paramagnetic
phase the rise of the antiferromagnetic correlations on cooling also leads to an increase of the
bandwidth.
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Figure 4. Temperature dependence of the specific heat normalized to the maximum value induced
by spin polarons (1) and experimental data (2) [10].
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Figure 5. Temperature dependence of the conductivity σ(T ) at ω → 0.

To estimate the contribution of the polaron excitations to the specific heat the average
value of the kinetic energy of the polaron Kp is simulated by the Green function

Kp = 1

N

∑
k

ω(k)
1

π

∫
dE f (E) Im G2(k, E). (7)

The temperature dependence of C = dKp/dT is plotted in figure 4. Specific heat maxima
are observed at T � 1.7, 4.5 K. Temperatures corresponding to the specific heat maxima
agree well with experimental data [10] as shown in figure 4. Transport properties such as
conductivity can be obtained from Kubo formulae in the limit of d → ∞ [11]

σ(ω) = σ0

∑
σ

∫
dω′ Iσ (ω′, ω′ + ω)

f (ω′) − f (ω′ + ω)

ω
,

Iσ (ω1, ω2) = 1

π2

∑
k

Im Gσ (k, ω1) Im Gσ (k, ω2)

(8)

where σ0 is a constant defining a dimension of conductivity. The temperature dependence of
the conductivity σ(ω → 0) is presented in figure 5. Below TN the magnitude of σ decreases
sharply with increasing sublattice magnetization. At T ∼ 16 K the change of the derivative
sign of the chemical potential from dµ/dT < 0 to dµ/dT > 0 correlates with the peculiarity
in dσ/dT . The drop of the conductivity at T > 5 K arises from the shift of band bottom
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Figure 6. Optical conductivity at temperatures T = 2 K (1), 7 K (2), and 17 K (3).
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Figure 7. Energy ωmax associated with the maximum value of the optical conductivity σmax versus
temperature. The inset illustrates σmax versus temperature.

minimum from the zone centre (0, 0, 0) to (1, 0, 1), (0, 1, 1). This is shown in figure 1(b).
The optical conductivity is presented in figure 6 and reveals two maxima. The first peak results
from intraband transitions and the broad maximum σ(ω) is attributed to transitions between
the lower and upper bands. The energy corresponding to the first peak and the intensity versus
the temperature are shown in figure 7. The temperature dependence of σ(T ) may be observed
by microwaves for an amplitude of electric field E0 and a plane polarized wave with frequency
ω. The absorption power delivered to the system is defined as P(ω) = 1

2 E2
0 Re[σz(ω)] [12].

A decrease of intensity of the infrared absorption in CuB2O4 can be found at T < TN and at
ω ∼ 0.4 eV.

The features in the low-temperature behaviour of the specific heat and conductivity arise
from a modification of the polaron excitation band. The density of state maximum is near
the Fermi level and shifts to high energies at T > 10 K. Increasing hole concentration leads
to a decrease of the critical temperature for formation of spin structure modulation T ∗. The
specific heat maximum also shifts to low temperatures. These concentration dependences
are given in figure 8. Displacement of the B3+ ion in CuB2O4 by a bivalent ion induces
a rise of hole concentration and leads to a decrease of critical temperature T ∗. A similar
effect may be observed in a nonuniform electric field because a electron–hole coupling pair
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Figure 8. Critical temperature of formation of the spin density wave T ∗(1) along [001] and the
temperature corresponding to the specific heat maximum TCmax (2) versus hole concentration.

will move and the difference between the kinetic and effective potential energy due to s–d
exchange decreases. Holes hopping between nearest neighbours gives rise to the appearance
of additional ferromagnetic exchange and as a result of the total exchange at T  TN decreases
in comparison with the exchange value at T � TN.

4. Conclusion

In conclusion, we summarize the main results. Spin polarized s-electrons form a spin density
wave with the period equal to the Fermi momentum. The SDW modulates the density of
localized spins as a result of strong s–d coupling. The estimated temperature dependence of
the spin polaron Fermi momentum is in good agreement with the evolution of the satellite
position versus temperature in CuB2O4. The low-temperature specific heat maximum arises
from the shift of the band bottom minimum from the zone centre (0, 0, 0) to (1, 0, 1), (0, 1, 1).
The presented calculations predict a sharp decrease of the conductivity and the intensity of
infrared absorption at the Nèel temperature and a drop of conductivity at T � 5 K.

References

[1] Maruyama S, Tanaka H and Narumi Y 2001 Preprint cond-mat/0010388
[2] Horvatic M et al 1999 Phys. Rev. Lett. 83 420
[3] Roessli B et al 2001 Phys. Rev. Lett. 86 1885
[4] Martinez-Ripoli M et al 1971 Acta Crystallogr. B 27 677
[5] Boehm M et al 2002 J. Magn. Magn. Mater. C 250 313
[6] Petrakovskii G A, Balaev A D and Vorotinov A M 2000 Phys. Solid State 42 321
[7] Aleksandrov K S et al 2003 Phys. Solid State 45 467
[8] Bergmann D and Hinze J 1996 Angew. Chem. Int. Edn Engl. 35 150
[9] Barabanov A F, Maksimov L A and Mikheenkov A V 2001 JETP Lett. 74 362

[10] Petrakovskii G A, Popov M A and Roessli B 2001 JETP 92 809
[11] Izyumov Ya A and Skryabin Yu N 2001 Phys.—Usp. 44 121
[12] Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437


